Monday, August 27, 2012

"Guinea Pigs" on CBS is Going to be Super Great, I Can Just Tell


An open letter to Mad Men producer/writer Dahvi Waller

Dear Dahvi,

I just wanted to drop you a quick note of congratulations when I heard through the grapevine that CBS has signed you on to do a pilot episode of your new medical drama, Guinea Pigs (well actually, I heard it from the Hollywood Reporter; the grapevine doesn’t tell me squat). According to the news item,
The drama centers on group of trailblazing doctors who run clinical trials at a hospital in Philadelphia. The twist: The trials are risky, and the guinea pigs are human.
Probably just like this, but
with a bigger body count.
(Sidenote: that’s quite the twist there! For a minute, I thought this was going to be the first ever rodent-based prime time series!)

I don’t want to take up too much of your time. I’m sure you’re extremely busy with lots of critical casting decisions, like: will the Evil Big Pharma character be a blonde, beautiful-but-treacherous Ice Queen type in her early 30’s, or an expensively-suited, handsome-but-treacherous Gordon Gekko type in his early 60’s? (My advice: Don’t settle!  Use both! Viewers of all ages can love to hate the pharmaceutical industry!)

About that name, by the way: great choice! I’m really glad you didn’t overthink that one. A good writer should go with her gut and pick the first easy stereotype that pops into her head. (Because the head is never closer to the gut then when it’s jammed firmly up … but I don’t have to explain anatomy to you! You write a medical drama for television!)

I’m sure the couple-three million Americans who enroll in clinical trials each year will totally relate to your calling them guinea pigs. In our industry, we call them heroes, but that’s just corny, right? Real heroes on TV are people with magic powers, not people who contribute to the advancement of medicine.

Anyway, I’m just really excited because our industry is just so, well … boring! We’re so fixated on data collection regulations and safety monitoring and ethics committee reviews and yada yada yada – ugh! Did you know we waste 5 to 10 years on this stuff, painstakingly bringing drugs through multiple graduated phases of testing in order to produce a mountain of data (sometimes running over 100,000 pages long) for the FDA to review?

Dahvi Waller: bringing CSI
to clinical research
I’m sure you’ll be giving us the full CSI-meets-Constant-Gardener treatment, though, and it will all seem so incredibly easy that your viewers will wonder what the hell is taking us so long to make these great new medicines. (Good mid-season plot point: we have the cure for most diseases already, but they’ve been suppressed by a massive conspiracy of sleazy corporations, corrupt politicians, and inept bureaucrats!)

Anyway, best of luck to you! I can't wait to see how accurately and respectfully you treat the work of the research biologists and chemists, physician investigators, nurses, study coordinators, monitors, reviewers, auditors, and patient volunteers guinea pigs who are working hard to ensure the next generation of medicines are safe and effective.  What can go wrong? It's television!




Wednesday, August 22, 2012

The Case against Randomized Trials is, Fittingly, Anecdotal


I have a lot of respect for Eric Topol, and am a huge fan of his ongoing work to bring new mobile technology to benefit patients.

The Trial of the Future
However, I am simply baffled by this short video he recently posted on his Medscape blog. In it, he argues against the continued use of randomized controlled trials (RCTs) to provide evidence for or against new drugs.

His argument for this is two anecdotes: one negative, one positive. The negative anecdote is about the recently approved drug for melanoma, Zelboraf:
Well, that's great if one can do [RCTs], but often we're talking about needing thousands, if not tens of thousands, of patients for these types of clinical trials. And things are changing so fast with respect to medicine and, for example, genomically guided interventions that it's going to become increasingly difficult to justify these very large clinical trials. 
For example, there was a drug trial for melanoma and the mutation of BRAF, which is the gene that is found in about 60% of people with malignant melanoma. When that trial was done, there was a placebo control, and there was a big ethical charge asking whether it is justifiable to have a body count. This was a matched drug for the biology underpinning metastatic melanoma, which is essentially a fatal condition within 1 year, and researchers were giving some individuals a placebo.
First and foremost, this is simply factually incorrect on a couple extremely important points.

  1. Zelboraf was not approved based on any placebo-controlled trials. The phase 1 and phase 2 trials were both single-arm, open label studies. The only phase 3 trial run before FDA approval used dacarbazine in the comparator arm. In fact, of the 34 trials currently listed for Zelboraf on ClinicalTrials.gov, only one has a placebo control: it’s an adjuvant trial for patients whose melanoma has been completely resected, where no treatment may very well be the best option.
  2. The Zelboraf trials are not an example of “needing thousands, if not tens of thousands, of patients” for approval. The phase 3 trial enrolled 675 patients. Even adding the phase 1 and 2 trials doesn’t get us to 1000 patients.

Correcting these details take a lot away from the power of this single drug to be a good example of why we should stop using “the sanctimonious [sic] randomized, placebo-controlled clinical trial”.

The second anecdote is about a novel Alzheimer’s Disease candidate:
A remarkable example of a trial of the future was announced in May. For this trial, the National Institutes of Health is working with [Banner Alzheimer's Institute] in Arizona, the University of Antioquia in Colombia, and Genentech to have a specific mutation studied in a large extended family living in the country of Colombia in South America. There is a family of 8000 individuals who have the so-called Paisa mutation, a presenilin gene mutation, which results in every member of this family developing dementia in their 40s. 
Researchers will be testing a drug that binds amyloid, a monoclonal antibody, in just 300 family members. They're not following these patients out to the point of where they get dementia. Instead, they are using surrogate markers to see whether or not the process of developing Alzheimer's can be blocked using this drug. This is an exciting way in which we can study treatments that can potentially prevent Alzheimer's in a very well-demarcated, very restricted population with a genetic defect, and then branch out to a much broader population of people who are at risk for Alzheimer's. These are the types of trials of the future. 
There are some additional disturbing factual errors here – the extended family numbers about 5,000, not 8,000. And estimates of the prevalence of the mutation within that family appear to vary from about one-third to one-half, so it’s simply wrong to state that “every member of this family” will develop dementia.

However, those errors are relatively minor, and are completely overshadowed by the massive irony that this is a randomized, placebo-controlled trial. Only 100 of the 300 trial participants will receive the active study drug, crenezumab. The other 200 will be on placebo.

And so, the “trial of the future” held up as a way to get us out of using randomized, placebo-controlled trials is actually a randomized, placebo-controlled trial itself. I hope you can understand why I’m completely baffled that Topol thinks this is evidence of anything.

Finally, I have to ask: how is this the trial of the future, anyway? It is a short-term study on a highly-selected patient population with a specific genetic profile, measuring surrogate markers to provide proof of concept for later, larger studies. Is it just me, or does that sound exactly like the early lovastatin trials of the mid-1980’s, which tested cholesterol reduction in a small population of patients with severe heterozygous familial hypercholesterolemia? Back to the Future, indeed.


[Image: time-travelling supercar courtesy of Flickr user JoshBerglund19.]

Thursday, August 16, 2012

Clinical Trial Alerts: Nuisance or Annoyance?


Will physicians change their answers when tired of alerts?

I am an enormous fan of electronic health records (EMRs).  Or rather, more precisely, I am an enormous fan of what EMRs will someday become – current versions tend to leave a lot to be desired. Reaction to these systems among physicians I’ve spoken with has generally ranged from "annoying" to "*$%#^ annoying", and my experience does not seem to be at all unique.

The (eventual) promise of EMRs in identifying eligible clinical trial participants is twofold:

First, we should be able to query existing patient data to identify a set of patients who closely match the inclusion and exclusion criteria for a given clinical trial. In reality, however, many EMRs are not easy to query, and the data inside them isn’t as well-structured as you might think. (The phenomenon of "shovelware" – masses of paper records scanned and dumped into the system as quickly and cheaply as possible – has been greatly exacerbated by governments providing financial incentives for the immediate adoption of EMRs.)

Second, we should be able to identify potential patients when they’re physically at the clinic for a visit, which is really the best possible moment. Hence the Clinical Trial Alert (CTA): a pop-up or other notification within the EMR that the patient may be eligible for a trial. The major issue with CTAs is the annoyance factor – physicians tend to feel that they disrupt their natural clinical routine, making each patient visit less efficient. Multiple alerts per patient can be especially frustrating, resulting in "alert overload".

A very intriguing study recently in the Journal of the American Medical Informatics Association looked to measure a related issue: alert fatigue, or the tendency for CTAs to lose their effectiveness over time.  The response rate to the alerts definitely decreased steadily over time, but the authors were mildly optimistic in their assessment, noting that response rate was still respectable after 36 weeks – somewhere around 30%:


However, what really struck me here is that the referral rate – the rate at which the alert was triggered to bring in a research coordinator – dropped much more precipitously than the response rate:


This is remarkable considering that the alert consisted of only two yes/no questions. Answering either question was considered a "response", and answering "yes" to both questions was considered a "referral".

  • Did the patient have a stroke/TIA in the last 6 months?
  • Is the patient willing to undergo further screening with the research coordinator?

The only plausible explanation for referrals to drop faster than responses is that repeated exposure to the CTA lead the physicians to more frequently mark the patients as unwilling to participate. (This was not actual patient fatigue: the few patients who were the subject of multiple CTAs had their second alert removed from the analysis.)

So, it appears that some physicians remained nominally compliant with the system, but avoided the extra work involved in discussing a clinical trial option by simply marking the patient as uninterested. This has some interesting implications for how we track physician interaction with EMRs and CTAs, as basic compliance metrics may be undermined by users tending towards a path of least resistance.

ResearchBlogging.org Embi PJ, & Leonard AC (2012). Evaluating alert fatigue over time to EHR-based clinical trial alerts: findings from a randomized controlled study. Journal of the American Medical Informatics Association : JAMIA, 19 (e1) PMID: 22534081